Holistic optimisation of noise reducing devices

T. Leissinga, F. Granneca, J. Defrancea, P. Jeana, D. Lutgendorfb, C. Heinkelec and J.-P. Clairboisd

a CSTB, 24 rue Joseph Fourier, 38400 Saint Martin d’Hères, France
b TNO, Oude Waalsdorperweg 63, 2597 Den Haag, Netherlands
c Laboratoire Régional de Strasbourg, 11, rue Jean Mentelin, 67035 Strasbourg, France
d Acoustic Technologies, Brugmann avenue 215, 1050 Brussels, Belgium
1. Context and objectives
2. Environmental situations and acoustical parameters
3. Non-acoustical parameters
4. Execution of optimisations
5. Results analysis
6. Conclusions and perspectives
1. **Context and objectives**
2. Environmental situations and acoustical parameters
3. Non-acoustical parameters
4. Execution of optimisations
5. Results analysis
6. Conclusions and perspectives
QUIESST: “QUIetening the Environment for a Sustainable Surface Transport”

Within the 7th EU framework program:
- Theme: Transport (including Aeronautics)
- FP7-SST-2008-RTD-1
 Activity: 7.2.1 - The greening of Surface Transport
 Area: 7.2.1.1 - The Greening of Products and Operations
 Topic: SST.2008.1.1.3 – Holistic Noise and Vibration Abatement
- Started November 2009
Objectives:
The concept of QUIESST is to merge [...] the consideration of the “true” intrinsic acoustic characteristics of Noise Reducing Device, together with their extrinsic acoustic characteristics, and their sustainability in a holistic way [...].

Topics:
- the near field / far field relationship (WP2)
- the in-situ measurement of “true” sound absorption and airborne sound insulation (WP3)
- the comparison of the existing laboratory tests results of European NRD with the corresponding in-situ measurement test results (WP4)
- the holistic approach of NRD optimization (WP5)
- the sustainability of NRD (WP6)
2 types of NRD characteristics/performances:

Acoustical
- Sound pressure level
- Insertion Loss
- etc…

Non-acoustical
- Construction cost
- Global Warming Potential
- Waste production
- etc…

The goal of WP5 IS NOT to design new optimized NRDs
The goal of WP5 IS to assess the potential acoustical and/or non-acoustical “gains” that can be expected for different sets of environmental configurations from multiple-criteria NRD optimisations
1. Context and objectives

2. Environmental situations and acoustical parameters

3. Non-acoustical parameters

4. Execution of optimisations

5. Results analysis

6. Conclusions and perspectives
Different environmental situations studied:

1. Types of environments: rural (large distance, grass covered ground) & urban (smaller distances, asphalt covered ground)

2. Topographies: flat, embanked and depressed topographies

3. Noise sources: road source (50 km/h for urban env., 90 km/h for rural env.) & railway sources (French high speed train at 300 km/h)

4. Noise reducing devices: 4 noise reducing devices families + a reference (straight, 4 m high concrete barrier)
Environmental situations and acoustical parameters

Graphs showing A-weighted spectra for different environments:
- Rural environment
- Urban environment
Environmental situations and acoustical parameters

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Unit</th>
<th>Range</th>
<th>Number of values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel width</td>
<td>m</td>
<td>[0.1; 0.5]</td>
<td>1</td>
</tr>
<tr>
<td>Panel length</td>
<td>m</td>
<td>[1; 5]</td>
<td>1</td>
</tr>
<tr>
<td>Tilting</td>
<td>Deg</td>
<td>[-5; +5]</td>
<td>1</td>
</tr>
<tr>
<td>Material</td>
<td>N/A</td>
<td>N/A</td>
<td>2</td>
</tr>
<tr>
<td>Bezier control points</td>
<td>m</td>
<td>[(-1.5; 0.1); (1.5; 0.1)]</td>
<td>4</td>
</tr>
</tbody>
</table>

α_1, α_2, d
Environmental situations and acoustical parameters

Acoustical parameters:

- two groups of 6 receivers at 2 and 4 meters on each side of the barrier
- acoustical performance expressed as a gain (or loss) compared to the reference screen

Illustration of the railway source, rural environment, depressed topography case

Illustration of the road source, urban environment, embanked topography case
1. Context and objectives
2. Environmental situations and acoustical parameters
3. Non-acoustical parameters
4. Execution of optimisations
5. Results analysis
6. Conclusions and perspectives
Economical parameters considered are:

1. Construction costs
2. Maintenance costs
3. Demolition costs (transportation but no material re-use)

Construction, demolition and maintenance costs, from the “Ministerie van Infrastructuur en Milieu” of Nederland

<table>
<thead>
<tr>
<th>NRD height [m]</th>
<th>Construction cost [€/m]</th>
<th>Demolition cost [€/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1449</td>
<td>312</td>
</tr>
<tr>
<td>4</td>
<td>2678</td>
<td>379</td>
</tr>
<tr>
<td>6</td>
<td>3884</td>
<td>446</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NRD height [m]</th>
<th>Construction cost [€/m²/year]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concretes and bricks</td>
<td>2,93</td>
</tr>
<tr>
<td>Timber</td>
<td>1,46</td>
</tr>
<tr>
<td>PMMA</td>
<td>1,48</td>
</tr>
</tbody>
</table>

Construction & demolition costs independent of the NRD material (manpower >> material costs)

Maintenance costs depend on the material used
Non-acoustical parameters: environmental impact

Environmental impacts calculated according to Life Cycle Assessment’s principles:

- **Energetic resources and raw materials**
- **Production**
- **Transport**
- **Setting up**
- **Use**
- **End of life**

- **Recycled matter**

- **Emissions (water, air, soil), solid waste**
4 environmental parameters:
- Energy, MJ
- Global Warming Potential (GWP), kg CO2 equivalent
- Waste (non hazardous and inert), kg
- Water consumption, Litre

Choice based on:
- indicators interdependence
- environmental relevance

<table>
<thead>
<tr>
<th>No.</th>
<th>Environmental impact</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Consumption of energy resources</td>
<td>MJ</td>
</tr>
<tr>
<td>2</td>
<td>Resource depletion / Abiotic resources Depletion (ADP)</td>
<td>kg antimony equivalent</td>
</tr>
<tr>
<td>3</td>
<td>Water consumption</td>
<td>Litre</td>
</tr>
<tr>
<td>4</td>
<td>Solid waste</td>
<td>kg</td>
</tr>
<tr>
<td>5</td>
<td>Climate change / Global Warming Potential (GWP)</td>
<td>kg CO2 Equivalent</td>
</tr>
<tr>
<td>6</td>
<td>Atmospheric acidification / Acidification potential of land and water sources (AP)</td>
<td>kg SO2 Equivalent</td>
</tr>
<tr>
<td>7</td>
<td>Air pollution</td>
<td>m³</td>
</tr>
<tr>
<td>8</td>
<td>Water pollution</td>
<td>m³</td>
</tr>
<tr>
<td>9</td>
<td>Stratospheric Ozone Depletion Potential (ODP)</td>
<td>kg CFC-R11 equivalent</td>
</tr>
<tr>
<td>10</td>
<td>Formation of photochemical ozone / Formation Potential of tropospheric Ozone Photochemical oxidants (POCP)</td>
<td>kg ethylene equivalent</td>
</tr>
<tr>
<td>11</td>
<td>Eutrophication potential (EP)</td>
<td>Kg (PO₄)³⁻ equivalent</td>
</tr>
</tbody>
</table>
Example of a NRD’s LCA:

LCA of a wood concrete/reinforced concrete NRD

<table>
<thead>
<tr>
<th>Functionnal Unit</th>
<th>Energy</th>
<th>Global Warming Potential</th>
<th>Waste: non hazardous + inert</th>
<th>Water consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m² of concrete NRD (during 50 years)</td>
<td>2027,33 MJ</td>
<td>24,51 kg CO2 eq</td>
<td>330,91 kg</td>
<td>351.64 L</td>
</tr>
</tbody>
</table>
Non-acoustical parameters: environmental impact

<table>
<thead>
<tr>
<th>Material</th>
<th>Mass density (kg/m³)</th>
<th>Reference Service Life (year)</th>
<th>Energy (MJ)</th>
<th>Global Warming Potential (kg CO₂ eq)</th>
<th>Waste (non-hazardous and inert) (kg)</th>
<th>Water consumption (Litre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinforced concrete</td>
<td>2400</td>
<td>50</td>
<td>1,14E+03</td>
<td>1,43E+02</td>
<td>2,42E+01</td>
<td>1,82E+03</td>
</tr>
<tr>
<td>Wood concrete</td>
<td>600</td>
<td>50</td>
<td>7,87E+03</td>
<td>3,67E+02</td>
<td>4,03E+01</td>
<td>1,69E+03</td>
</tr>
<tr>
<td>Pouzzolane concrete</td>
<td>1500</td>
<td>50</td>
<td>5,46E+03</td>
<td>6,18E+01</td>
<td>5,35E+00</td>
<td>2,02E+02</td>
</tr>
<tr>
<td>Brick</td>
<td>1000</td>
<td>50</td>
<td>3,02E+03</td>
<td>2,51E+02</td>
<td>7,17E+00</td>
<td>4,89E+02</td>
</tr>
<tr>
<td>PMMA</td>
<td>1190</td>
<td>25</td>
<td>1,45E+05</td>
<td>8,40E+03</td>
<td>1,07E+02</td>
<td>2,03E+04</td>
</tr>
<tr>
<td>Rockwool</td>
<td>70</td>
<td>25</td>
<td>1,92E+04</td>
<td>1,05E+03</td>
<td>3,39E+02</td>
<td>1,00E+04</td>
</tr>
<tr>
<td>Timber</td>
<td>472</td>
<td>20</td>
<td>2,22E+04</td>
<td>1,49E+02</td>
<td>2,47E+01</td>
<td>1,27E+03</td>
</tr>
<tr>
<td>Perforated aluminium</td>
<td>2430</td>
<td>25</td>
<td>1,46E+05</td>
<td>9,28E+03</td>
<td>2,56E+03</td>
<td>4,39E+04</td>
</tr>
<tr>
<td>Perforated steel</td>
<td>7020</td>
<td>25</td>
<td>3,40E+04</td>
<td>2,29E+03</td>
<td>2,21E+03</td>
<td>2,50E+04</td>
</tr>
<tr>
<td>Transport, lorry 20-28t, fleet average 100km</td>
<td>-</td>
<td>-</td>
<td>2,99E+02</td>
<td>1,93E+01</td>
<td>2,82E+00</td>
<td>7,76E+01</td>
</tr>
</tbody>
</table>
1. Context and objectives
2. Environmental situations and acoustical parameters
3. Non-acoustical parameters
4. Execution of optimisations
5. Results analysis
6. Conclusions and perspectives
Execution of optimisations

Numerical models:

> Sound propagation model: 2D implementation of the Boundary Element Method

> Optimisation models: evolutionary algorithm, associated with non-dominated sorting for multi-objective optimisations

Optimisation parameters:

> Populations with 50 individuals

> Evolution over 10 generations

> Gaussian mutation
Calculation times:

- Three environmental cases
- Three topographies
- Three acoustic objectives (diffraction side, reflection side, both sides)
- 4 NRD families

\~ 50 000 performance evaluations

<table>
<thead>
<tr>
<th></th>
<th>Flat</th>
<th>Embanked</th>
<th>Depressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>1.6</td>
<td>4.1</td>
<td>13.1</td>
</tr>
<tr>
<td>Rural</td>
<td>0.45</td>
<td>1.45</td>
<td>64.9</td>
</tr>
<tr>
<td>Railway</td>
<td>0.65</td>
<td>17.3</td>
<td>70.7</td>
</tr>
</tbody>
</table>
1. Context and objectives
2. Environmental situations and acoustical parameters
3. Non-acoustical parameters
4. Execution of optimisations
5. Results analysis
6. Conclusions and perspectives
Results analysis

Performance aggregation: performance indicators are aggregated according to their type:

- 1 acoustical indicator
- 1 environmental indicator
- 1 cost indicator

Point cloud representation:
Results analysis

Representation of performance indicators with a grading system and radar plots:

Sound level indicators:
- $\Delta L > 12 \text{ dB} \Rightarrow \text{grade} = 10$
- $12 \text{ dB} > \Delta L > 9 \text{ dB} \Rightarrow \text{grade} = 8$
- $9 \text{ dB} > \Delta L > 6 \text{ dB} \Rightarrow \text{grade} = 6$
- $6 \text{ dB} > \Delta L > 3 \text{ dB} \Rightarrow \text{grade} = 4$
- $3 \text{ dB} > \Delta L > 1 \text{ dB} \Rightarrow \text{grade} = 2$
- $1 \text{ dB} > \Delta L \Rightarrow \text{grade} = 0$

Environmental or cost indicators:
- $X < 0.1 \Rightarrow \text{grade} = 10$
- $0.1 > X > 0.25 \Rightarrow \text{grade} = 8$
- $0.25 > X > 0.5 \Rightarrow \text{grade} = 6$
- $0.5 > X > 1 \Rightarrow \text{grade} = 4$
- $1 > X > 2 \Rightarrow \text{grade} = 2$
- $X > 2 \Rightarrow \text{grade} = 0$
Results analysis

Example with a homogeneous NRD: rural, flat, road source
Optimisation on: material, panel width & tilting

Various NRD solutions:

- **Acoustically “good” solution**

- **Environmentally “good” solution**

- **Mean solution**
1. Context and objectives
2. Environmental situations and acoustical parameters
3. Non-acoustical parameters
4. Execution of optimisations
5. Results analysis
6. Conclusions and perspectives
Conclusions

• Holistic optimisation process developed for acoustical, environmental and cost performances

• Benefit from optimisations potentially high

• Wide variety of optimised barriers in the last generation

Helpful tool for noise reducing device design
Thank you for your attention!

thomas.leissing@cstb.fr