A stochastic model for sound propagation over irregular surfaces

Thomas Leissing – CSTB
thomas.leissing@cstb.fr
June 13th–16th, 2010
Outline

Objectives, context and proposed approach

Description of the methodology

Construction of the stochastic model
 Probability distribution of H, W, and D
 Description of the reference model
 Description of the stochastic model
 Probabilistic model of Γ, Λ and Θ
 Identifications of the distribution functions parameters

Application and validation

Conclusions and perspectives
Objectives

Development of a computational model for the study of wave propagation over irregular surfaces.
Research context

- Two-dimensional simulations in a homogeneous atmosphere
- Scatterers on the surface are of rectangular shape; they are parametrized by:
 - their height h,
 - their width w,
 - the spacing between two consecutive objects d.
- Scatterers surfaces and backing surface are perfectly rigid
- Backing surface is infinite
Proposed approach

Conventional approach: “exact” or explicit models (FDTD, BEM, ray tracing, etc.)

- Model approximations (e.g., diffraction theory)
- Uncertainties on the system parameters (e.g., scatterers geometry)
- High computational effort
- Relevance of calculated solution (results for one specific case)

Proposed approach: stochastic propagation model

- Very simple mean propagation model
- Associated with a probabilistic approach of uncertainties.
Proposed approach

Conventional approach: “exact” or explicit models (FDTD, BEM, ray tracing, etc.)

- model approximations (e.g. diffraction theory)
- uncertainties on the system parameters (e.g. scatterers geometry)
- high computational effort
- relevance of calculated solution (results for one specific case)
Proposed approach

Conventional approach: explicit models (Euler equations, ray tracing, etc.)

May not be the best approach...
Proposed approach

Conventional approach: explicit models (Euler equations, ray tracing, etc.)

May not be the best approach...

Proposed approach: stochastic propagation model

- Very simple mean propagation model
- ... associated with a probabilistic approach of uncertainties.
Proposed approach (cont’d 1)

Explicit or “exact” wave propagation model
Proposed approach (cont’d 1)

Explicit or “exact” wave propagation model

Stochastic wave propagation model

Source

Receiver

\[P_r(\omega) \]

\((\Gamma, \Lambda, \Theta) \)

Stochastic surface
Outline

Objectives, context and proposed approach

Description of the methodology

Construction of the stochastic model
 Probability distribution of H, W, and D
 Description of the reference model
 Description of the stochastic model
 Probabilistic model of Γ, Λ and Θ
 Identifications of the distribution functions parameters

Application and validation

Conclusions and perspectives
Description of the methodology

<table>
<thead>
<tr>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Construction of the probability distributions of the scatterers geometrical parameters (height H, width W, spacing D of scatterers)</td>
</tr>
<tr>
<td>2. Obtain reference solutions (measurements, "exact" model)</td>
</tr>
<tr>
<td>3. Construction of the probability distributions of Γ, Λ and Θ (stochastic surface parameters)</td>
</tr>
<tr>
<td>4. Identification of parameters of $p_\Gamma(\gamma)$, $p_\Lambda(\lambda)$ and $p_\Theta(\theta)$ (non-linear, multi-dimensional inverse problem)</td>
</tr>
<tr>
<td>5. Solution of the stochastic equations with the Monte-Carlo method</td>
</tr>
</tbody>
</table>
Description of the methodology

<table>
<thead>
<tr>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Construction of the probability distributions of the scatterers geometrical parameters (height H, width W, spacing D of scatterers)</td>
</tr>
<tr>
<td>2. Obtain reference solutions (measurements, “exact” model)</td>
</tr>
</tbody>
</table>
Description of the methodology

Procedure

1. Construction of the probability distributions of the scatterers geometrical parameters (height H, width W, spacing D of scatterers)
2. Obtain reference solutions (measurements, “exact” model)
3. Construction of the probability distributions of Γ, Λ and Θ (stochastic surface parameters)
Description of the methodology

Procedure

1. Construction of the probability distributions of the scatterers geometrical parameters (height H, width W, spacing D of scatterers)
2. Obtain reference solutions (measurements, “exact” model)
3. Construction of the probability distributions of Γ, Λ and Θ (stochastic surface parameters)
4. Identification of parameters of $p_\Gamma (\gamma)$, $p_\Lambda (\lambda)$ and $p_\Theta (\theta)$ (non-linear, multi-dimensional inverse problem)

www.internoise2010.org
Description of the methodology

Procedure

1. Construction of the probability distributions of the scatterers geometrical parameters (height H, width W, spacing D of scatterers)

2. Obtain reference solutions (measurements, “exact” model)

3. Construction of the probability distributions of Γ, Λ and Θ (stochastic surface parameters)

4. Identification of parameters of $p_{\Gamma}(\gamma)$, $p_{\Lambda}(\lambda)$ and $p_{\Theta}(\theta)$ (non-linear, multi-dimensional inverse problem)

5. Solution of the stochastic equations with the Monte-Carlo method
Outline

Objectives, context and proposed approach

Description of the methodology

Construction of the stochastic model
 Probability distribution of H, W, and D
 Description of the reference model
 Description of the stochastic model
 Probabilistic model of Γ, Λ and Θ
 Identifications of the distribution functions parameters

Application and validation

Conclusions and perspectives
Construction of the computational model

Procedure

1. Construction of the probability distributions of the scatterers geometrical parameters (height H, width W, spacing D of scatterers)
2. Obtain reference solutions (measurements, “exact” model)
3. Construct probability distributions of Γ, Λ and Θ (stochastic surface parameters)
4. Identify parameters of $p_\Gamma (\gamma)$, $p_\Lambda (\lambda)$ and $p_\Theta (\theta)$
5. Solve the stochastic equations with the Monte-Carlo method
Probability distribution of H, W, and D

Information Theory and maximum entropy principle: maximize the uncertainty of the system ("worst-case" scenario)

- Algebraic properties: real, positive quantities
- No dependence between h, w, and d is assumed

The maximum entropy principle yields

- Independence of random variables H, W, and D
- Probability distributions of H, W, and D are gamma distributions
Information Theory and maximum entropy principle: maximize the uncertainty of the system ("worst-case" scenario)

Available information concerning h, w and d:

- Algebraic properties: real, positive quantities
- No dependence between h, w and d is assumed
Probability distribution of H, W, and D

Information Theory and maximum entropy principle: maximize the uncertainty of the system (“worst-case” scenario)

Available information concerning h, w, and d:

- **Algebraic properties:** real, positive quantities
- **No dependence between** h, w, and d is assumed

The maximum entropy principle yields

- **Independence of random variables** H, W, and D
- **Probability distributions of** H, W, and D are **gamma distributions**
Probability distribution of H, W, and D

Information Theory and maximum entropy principle: maximize the uncertainty of the system ("worst-case" scenario)

Available information concerning h, w and d:
- Algebraic properties: real, positive quantities
- No dependence between h, w and d is assumed

The maximum entropy principle yields
- Independence of random variables H, W and D
- Probability distributions of H, W and D are gamma distributions
Construction of the computational model

Procedure

1. **Construction of the probability distributions of the scatterers geometrical parameters** (height h, width w, spacing d of scatterers)
2. **Obtain reference solutions**
3. **Construct probability distributions of Γ, Λ and Θ (stochastic surface parameters)**
4. **Identify parameters of $p_\Gamma(\gamma)$, $p_\Lambda(\lambda)$ and $p_\Theta(\theta)$**
5. **Solve the stochastic equations with the Monte-Carlo method**
Reference model

Boundary Element Method (BEM)

- 2D simulations on \([0 - 10] \text{ kHz}\)
- Perfectly reflecting surfaces (horizontal and vertical surfaces)
- The quantity under interest is

\[
L^{\exp}(\omega) = 10 \log_{10} \left(\frac{\left| P^{\exp}(\omega) \right|^2}{\left| p^{\text{free}}(\omega) \right|^2} \right)
\]

- 500 realizations: \(10^{-3}\) convergence on the 1\(^{\text{st}}\) and 2\(^{\text{nd}}\) moment of \(L^{\exp}(\omega)\)
Example:

- \((m_H, \sigma_H) = (40, 8) \text{ cm}\)
- \((m_W, \sigma_W) = (40, 8) \text{ cm}\)
- \((m_D, \sigma_D) = (30, 6) \text{ cm}\)

Figure: Reference model (500 outputs, thin black lines) and the mean value estimate \(m_{L^{\text{exp}}}\) (thick white line).
Construction of the computational model

Procedure

1. Construction of the probability distributions of the scatterers' geometrical parameters (height \(h \), width \(w \), spacing \(d \) of scatterers)
2. Obtain reference solutions
3. Construct probability distributions of \(\Gamma \), \(\Lambda \) and \(\Theta \) (stochastic surface parameters)
4. Identify parameters of \(p_{\Gamma}(\gamma) \), \(p_{\Lambda}(\lambda) \) and \(p_{\Theta}(\theta) \)
5. Solve the stochastic equations with the Monte-Carlo method
Description of the stochastic model

Based on solutions of the Helmholtz equation (2D) in a homogeneous atmosphere

\[P(x_r, z_r; \omega) = i\pi H_0^{(1)}(kd) + Q_c i\pi H_0^{(1)}(kr) \]
Description of the stochastic model

Based on solutions of the Helmholtz equation (2D) in a homogeneous atmosphere

\[P(x_r, z_r; \omega) = i\pi H_0^{(1)}(kd) + Q_c i\pi H_0^{(1)}(kr) \]

- \(P \): complex pressure
- \((x_r, z_r)\): receiver coordinates
- \(\omega, k \): pulsation and wavenumber
- \(d \): source–receiver distance
- \(r \): image source–receiver distance
- \(H_0^{(1)} \): Hankel function of the first kind and order 0
- \(Q_c \): cylindrical reflection coefficient
Description of the stochastic model

Based on solutions of the Helmholtz equation (2D) in a homogeneous atmosphere

\[P(x_r, z_r; \omega + \Theta) = i\pi H_0^{(1)} \left(\frac{kd}{\Lambda} \right) + \Gamma i\pi H_0^{(1)} \left(\frac{kr}{\Lambda} \right) \]
Description of the stochastic model

Based on solutions of the Helmholtz equation (2D) in a homogeneous atmosphere

\[P(x_r, z_r; \omega + \Theta) = i\pi H_0^{(1)} \left(\frac{kd}{\Lambda} \right) + \Gamma i\pi H_0^{(1)} \left(\frac{kr}{\Lambda} \right) \]

Random variables

- \(\Lambda \): time stretching \(\in]0, +\infty [\)
Description of the stochastic model

Based on solutions of the Helmholtz equation (2D) in a homogeneous atmosphere

\[
P(x_r, z_r; \omega + \Theta) = i\pi H_0^{(1)} \left(\frac{kd}{\Lambda} \right) + \Gamma i\pi H_0^{(1)} \left(\frac{kr}{\Lambda} \right)
\]

Random variables

- \(\Lambda, \Gamma \): amount of reflected/transmitted wave \(\in [0, 1] \)
Description of the stochastic model

Based on solutions of the Helmholtz equation (2D) in a homogeneous atmosphere

\[P(x_r, z_r; \omega + \Theta) = i\pi H_0^{(1)} \left(\frac{kd}{\Lambda} \right) + \Gamma i\pi H_0^{(1)} \left(\frac{kr}{\Lambda} \right) \]

Random variables

- \(\Lambda, \Gamma, \Theta \): frequency shifting \(\in [0, +\infty[\)
Probabilistic model of Γ, Λ and Θ

Available information:

- Λ: time stretching $\in [0, +\infty]$
- Γ: amount of reflected/transmitted wave $\in [0, 1]$
- Θ: frequency shifting $\in [0, +\infty]$
Probabilistic model of Γ, Λ and Θ

Available information:

- Λ: time stretching $\in]0, +\infty [$
- Γ: amount of reflected/transmitted wave $\in [0, 1]$
- Θ: frequency shifting $\in [0, +\infty [$

Information Theory and maximum entropy principle:

- Random variable Γ:

 \[p_{\Gamma}(\gamma) = 1_{[0,1]}(\gamma) e^{-\mu_0 - \gamma \mu_1 - \gamma^2 \mu_2} \]

- Random variable Λ and Θ: **gamma distributions** with parameters $(m_{\Lambda}, m_{\Theta})$ (mean) and $(\delta_{\Lambda}, \delta_{\Theta})$ (dispersion)
Construction of the computational model

Procedure

1. Construction of the probability distributions of the scatterers geometrical parameters (height h, width w, spacing d of scatterers)

2. Obtain reference solutions

3. Construct probability distributions of Γ, Λ and Θ (stochastic surface parameters)

4. Identify parameters of $p_\Gamma(\gamma)$, $p_\Lambda(\lambda)$ and $p_{\Theta}(\theta)$

5. Solve the stochastic equations with the Monte-Carlo method
Probabilistic model of Γ, Λ and Θ

Information Theory and maximum entropy principle:

- Random variable Γ:
 \[p_{\Gamma}(\gamma) = 1_{[0,1]}(\gamma) e^{-\mu_0 - \gamma \mu_1 - \gamma^2 \mu_2} \]

- Random variable Λ and Θ: **gamma distributions** with parameters (m_Λ, m_Θ) (mean) and $(\delta_\Lambda, \delta_\Theta)$ (dispersion)

To do

Need to find a relation between scatterers geometry and the stochastic surface parameters with the help of reference solutions.

\[u(m_H, m_W, m_D, \sigma_H, \sigma_D, \sigma_W) \leftrightarrow w(\mu_0, \mu_1, \mu_2, m_\Lambda, m_\Theta, \delta_\Lambda, \delta_\Theta) \]
Probabilistic model of Γ, Λ and Θ

Information Theory and maximum entropy principle:

- Random variable Γ:

 $$p_\Gamma (\gamma) = \mathbb{1}_{[0,1]} (\gamma) e^{-\mu_0 - \gamma \mu_1 - \gamma^2 \mu_2}$$

- Random variable Λ and Θ: **gamma distributions** with parameters (m_Λ, m_Θ) (mean) and $(\delta_\Lambda, \delta_\Theta)$ (dispersion)

To do

Need to find a relation between scatterers geometry and the stochastic surface parameters with the help of reference solutions.

$$u \left(m_H, m_W, m_D, \sigma_H, \sigma_D, \sigma_W \right) \leftrightarrow w \left(\mu_0, \mu_1, \mu_2, m_\Lambda, m_\Theta, \delta_\Lambda, \delta_\Theta \right)$$
Identification of parameters of distribution functions $\rho_\Gamma (\gamma)$, $\rho_\Lambda (\lambda)$ and $\rho_\Theta (\theta)$

Stochastic inverse problem solved with

- a genetic algorithm...
- ...with a multi-objective function

Minimization of the mean-square norm:

Maximization of the log-likelihood function:
Identification of parameters of distribution functions \(p_\Gamma (\gamma) \), \(p_\Lambda (\lambda) \) and \(p_\Theta (\theta) \)

Stochastic inverse problem solved with

- a genetic algorithm...
- ...with a multi-objective function

Two objectives

- Minimization of the mean-square norm: minimizes the areas where the experimental observations do not belong to the confidence region of the stochastic model
Identification of parameters of distribution functions $p_\Gamma (\gamma)$, $p_\Lambda (\lambda)$ and $p_\Theta (\theta)$

<table>
<thead>
<tr>
<th>Stochastic inverse problem solved with</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ a genetic algorithm…</td>
</tr>
<tr>
<td>▶ …with a multi-objective function</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Two objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Minimization of the mean-square norm: minimizes the areas where the experimental observations do not belong to the confidence region of the stochastic model</td>
</tr>
<tr>
<td>▶ Maximization of the log-likelihood function: maximizes the likelihood between the experimental observations and observations from the stochastic model</td>
</tr>
</tbody>
</table>
Construction of the computational model

Procedure

1. Construction of the probability distributions of the scatterers geometrical parameters (height h, width w, spacing d of scatterers)
2. Obtain reference solutions
3. Construct probability distributions of Γ, Λ and Θ (stochastic surface parameters)
4. Identify parameters of $p_{\Gamma}(\gamma)$, $p_{\Lambda}(\lambda)$ and $p_{\Theta}(\theta)$
5. Solve the stochastic equations with the Monte-Carlo method
Outline

Objectives, context and proposed approach

Description of the methodology

Construction of the stochastic model
 Probability distribution of H, W, and D
 Description of the reference model
 Description of the stochastic model
 Probabilistic model of Γ, Λ and Θ
 Identifications of the distribution functions parameters

Application and validation

Conclusions and perspectives
Two scatterers morphologies

Case 1:

\((m_H, \sigma_H) = (10, 2) \text{ cm}\)
\((m_W, \sigma_W) = (20, 4) \text{ cm}\)
\((m_D, \sigma_D) = (30, 6) \text{ cm}\)

Case 2:

\((m_H, \sigma_H) = (40, 8) \text{ cm}\)
\((m_W, \sigma_W) = (40, 8) \text{ cm}\)
\((m_D, \sigma_D) = (30, 6) \text{ cm}\)

\(u_1 = (0.1, 0.2, 0.3, 0.2, 0.2, 0.2)\)

\(u_2 = (0.4, 0.4, 0.3, 0.2, 0.2, 0.2)\)
Confidence region from the stochastic model

\[u_1 = (0.1, 0.2, 0.3, 0.2, 0.2, 0.2) \]

\[u_2 = (0.4, 0.4, 0.3, 0.2, 0.2, 0.2) \]
Confidence region from the stochastic model

Experimental observations belong to the confidence regions of the stochastic model, independently of the dispersion on the system.
Outline

Objectives, context and proposed approach

Description of the methodology

Construction of the stochastic model
 Probability distribution of H, W, and D
 Description of the reference model
 Description of the stochastic model
 Probabilistic model of Γ, Λ and Θ
 Identifications of the distribution functions parameters

Application and validation

Conclusions and perspectives
Conclusions

Construction of a stochastic model for propagation over complex surfaces based on...
Conclusions

Construction of a stochastic model for propagation over complex surfaces based on...

...a simple propagation model...

- based on solutions of the 2D Helmholtz equation,
Conclusions

Construction of a stochastic model for propagation over complex surfaces based on...

...a simple propagation model...
- based on solutions of the 2D Helmholtz equation,

...augmented with a probabilistic approach of uncertainties...
- uses Information Theory and the maximum entropy principle,
- with nonlinear optimization techniques,
Conclusions

Construction of a stochastic model for propagation over complex surfaces based on...

...a simple propagation model...
- based on solutions of the 2D Helmholtz equation,

...augmented with a probabilistic approach of uncertainties...
- uses Information Theory and the maximum entropy principle,
- with nonlinear optimization techniques,

...leading to a statistical, accurate and relevant description of sound fields above the scatterers.
Determination of stochastic reflection coefficients

- Only one source/receiver positions in this example
- Repeating the operation for several incidence angles would allow the determination of stochastic reflection coefficients for inclusion in e.g. ray tracing software
Scatterers geometry

- Scatterers with rectangular cross sections were used. The method is very general and could be used for any scatterers geometry:
 - hemispheres
 - cylinders
 - ...

Perspectives
Thank you for your attention.