Computational model for long-range nonlinear propagation over urban cities

T. Leissing1,*, C. Soize2, P. Jean1 and J. Defrance1

1Université Paris-Est, Centre Scientifique et Technique du Bâtiment, 24 rue Joseph Fourier, 38400 Saint Martin d’Hères, France

2Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME FRE3160 CNRS, 5 bd Descartes, 77454 Marne-la-Vallee, France

*thomas.leissing@cstb.fr

Inter-Noise 2009
Ottawa, Canada
2009 August, 23-26
Shock waves from explosions can damage structures. Signals prediction at long range involves:

- High amplitudes
- Meteorological effects
- Ground effects
- Propagation over urban environments

Development of a computational model for long-range propagation over urban environments.
Shock waves from explosions can damage structures.

Signals prediction at long range involves:

- High amplitudes
- Meteorological effects
- Ground effects
- Propagation over urban environments
Shock waves from explosions can damage structures.

Signals prediction at long range involves:

- High amplitudes
- Meteorological effects
- Ground effects
- **Propagation over urban environments**

Development of a computational model for long-range propagation over urban environments.
Two options

Explicit models (Euler’s equations, ray tracing, …)

- High computational effort
- Model approximations (e.g. diffraction theory)
- Uncertainties on the system parameters (e.g. buildings geometry)

→ May not be the best approach…
Two options

Simplified modeling

- Simplified model based on the Nonlinear Parabolic Equation (NPE) and its extension to propagation over porous ground layers.

 T. Leissing, P. Jean, J. Defrance, and C. Soize.
 Nonlinear parabolic equation model for finite-amplitude sound propagation over porous ground layers.

- …associated with a probabilistic approach of uncertainties
Outline

1 Principle and methodology
Outline

1. Principle and methodology

2. Construction of the computational model
Outline

1. Principle and methodology
2. Construction of the computational model
3. Application and validation
Outline

1. Principle and methodology
2. Construction of the computational model
3. Application and validation
4. Conclusion & perspectives
Outline

1. Principle and methodology
2. Construction of the computational model
3. Application and validation
4. Conclusion & perspectives
Explicit wave propagation model

Random parameters H, W, D modeling a urban city

Probabilistic model depending on a parameter u. u depends on the mean values and the dispersions of random variables H, W and D.

The urban city parameter u is given.
Explicit wave propagation model

- Source
- Propagation model: City explicitly accounted for

Random parameters H, W, D modeling a urban city

Probabilistic model depending on a parameter u. u depends on the mean values and the dispersions of random variables H, W and D.

The urban city parameter u is given.

Simplified wave propagation model

- Source
- Propagation model: over an equivalent city

Random parameters Γ, Λ, Θ of the porous medium

Probabilistic model depending on a parameter w. w depends on the mean values and the dispersions of random variables Γ, Λ and Θ.

Identification of the porous medium parameter w is performed by solving a stochastic inverse problem.
Construction of the computational model

Procedure

1. Construction of the probability distribution of urban environments geometrical parameters (height h, width w, spacing d, ...)

Obtain reference solutions

Construct probability distributions of Γ, Λ, and Θ, parameters of the porous layer

Identify parameters of $p_{\Gamma}(\gamma)$, $p_{\Lambda}(\lambda)$ and $p_{\Theta}(\theta)$

Solve the stochastic equations with Monte-Carlo
Construction of the computational model

Procedure

1. Construction of the probability distribution of urban environments geometrical parameters (height h, width w, spacing d, ...)

2. Obtain reference solutions
Construction of the computational model

Procedure

1. Construction of the probability distribution of urban environments geometrical parameters (height h, width w, spacing d, ...)

2. Obtain reference solutions

3. Construct probability distributions of Γ, Λ and Θ, parameters of the porous layer
Construction of the computational model

Procedure

1. Construction of the probability distribution of urban environments geometrical parameters (height h, width w, spacing d, ...)
2. Obtain reference solutions
3. Construct probability distributions of Γ, Λ and Θ, parameters of the porous layer
4. Identify parameters of $p_{\Gamma}(\gamma)$, $p_{\Lambda}(\lambda)$ and $p_{\Theta}(\theta)$
Procedure

1. Construction of the probability distribution of urban environments geometrical parameters (height h, width w, spacing d, ...)

2. Obtain reference solutions

3. Construct probability distributions of Γ, Λ and Θ, parameters of the porous layer

4. Identify parameters of $p_\Gamma(\gamma)$, $p_\Lambda(\lambda)$ and $p_\Theta(\theta)$

5. Solve the stochastic equations with Monte-Carlo
Outline

1. Principle and methodology
2. Construction of the computational model
3. Application and validation
4. Conclusion & perspectives
Construction of the computational model

Procedure

1. **Construction of the probability distribution of urban environments geometrical parameters** (height h, width w, spacing d, ...)

2. Obtain reference solutions

3. Construct probability distributions of Γ, Λ and Θ, parameters of the porous layer

4. Identify parameters of $p_{\Gamma} (\gamma)$, $p_{\Lambda} (\lambda)$ and $p_{\Theta} (\theta)$

5. Solve the stochastic equations with Monte-Carlo
Probabilistic model of urban environment geometrical parameters

Information Theory and Maximum Entropy Principle: maximize the uncertainty of the system ("worst-case" scenario)
Probabilistic model of urban environment
geometrical parameters

Information Theory and Maximum Entropy Principle: maximize
the uncertainty of the system (“worst-case” scenario)

Available information concerning h, w and d:

- Algebraic properties: real, positive quantities
- No dependance between h, w and d is assumed
Probabilistic model of urban environment geometrical parameters

Information Theory and Maximum Entropy Principle: maximize the uncertainty of the system ("worst-case" scenario)

Available information concerning h, w and d:

- Algebraic properties: real, positive quantities
- No dependance between h, w and d is assumed

The Maximum Entropy Principle yields

- Independance of random variables H, W and D
- Probability distributions of H, W and D are gamma distributions
Probabilistic model of urban environment geometrical parameters

Information Theory and Maximum Entropy Principle: maximize the uncertainty of the system (“worst-case” scenario)

Available information concerning h, w and d:

- Algebraic properties: real, positive quantities
- No dependance between h, w and d is assumed

The Maximum Entropy Principle yields

- Independance of random variables H, W and D
- Probability distributions of H, W and D are gamma distributions
Construction of the computational model

Procedure

1. Construction of the probability distribution of urban environments geometrical parameters (height h, width w, spacing d, …)

2. Obtain reference solutions

3. Construct probability distributions of Γ, Λ and Θ, parameters of the porous layer

4. Identify parameters of $p_\Gamma(\gamma)$, $p_\Lambda(\lambda)$ and $p_\Theta(\theta)$

5. Solve the stochastic equations with Monte-Carlo
Reference model

Boundary Element Method (BEM)

- 2D simulations
- Perfectly reflecting surfaces (ground, buildings)
- The quantity under interest is

\[L^{\text{exp}}(\omega) = 10\log_{10}\left(\frac{|P_r^{\text{exp}}(\omega)|^2}{|P_{\text{free}}(\omega)|^2}\right) \]
Reference model

Boundary Element Method (BEM)

- 2D simulations
- Perfectly reflecting surfaces (ground, buildings)
- The quantity under interest is

\[
L^{\text{exp}}(\omega) = 10 \log_{10} \left(\frac{\left| P_r^{\text{exp}}(\omega) \right|^2}{\left| P_{\text{free}}(\omega) \right|^2} \right)
\]

Graph:

- PLA relative to free field [dB]
- Frequency [Hz]

\[u_2 = (40, 40, 30, 0.2, 0.2, 0.2)\]
Construction of the computational model

Procedure

1. Construction of the probability distribution of urban environments geometrical parameters (height h, width w, spacing d, ...)

2. Obtain reference solutions

3. Construct probability distributions of Γ, Λ and Θ, parameters of the porous layer

4. Identify parameters of $p_\Gamma (\gamma)$, $p_\Lambda (\lambda)$ and $p_\Theta (\theta)$

5. Solve the stochastic equations with Monte-Carlo
Nonlinear Parabolic Equation model

\[\Lambda \partial_t R_a + \partial_x \left(\beta \frac{c_0}{2} R_a^2 \right) + \frac{c_0}{2} \int \partial_z^2 R_a \, dx = 0 \text{ (air)} \]

\[\Lambda \partial_t R_u + \partial_x \left(\beta \frac{c_0}{2} R_u^2 \right) + \frac{c_0}{2} \int \partial_z^2 R_u \, dx = 0 \text{ (urban environment)} \]

\[\partial_z R_a = \Gamma \partial_z R_u \text{ on the interface} \]

\[L^{\exp}(\omega) = 10 \log_{10} \left(\frac{\rho_0 c_0^2 \hat{R}_a (\omega + \Theta)}{p_{\text{free}} (\omega + \Theta)} \right)^2 \]
Nonlinear Parabolic Equation model

\[\Lambda \partial_t R_a + \partial_x \left(\beta \frac{c_0}{2} R_a^2 \right) + \frac{c_0}{2} \int \partial_z^2 R_a \, dx = 0 \quad \text{(air)} \]

\[\Lambda \partial_t R_u + \partial_x \left(\beta \frac{c_0}{2} R_u^2 \right) + \frac{c_0}{2} \int \partial_z^2 R_u \, dx = 0 \quad \text{(urban environment)} \]

\[\partial_z R_a = \Gamma \partial_z R_u \quad \text{on the interface} \]

\[L^{\exp}(\omega) = 10 \log_{10} \left(\left| \frac{\rho_0 c_0^2 \hat{R}_a(\omega + \Theta)}{p_{\text{free}}(\omega + \Theta)} \right|^2 \right) \]

Random variables

- \(\Lambda \): time stretching \(\in]0, +\infty[\)
- \(\Gamma \): amount of reflected/transmitted wave \(\in [0, 1] \)
- \(\Theta \): frequency shifting \(\in [0, +\infty[\)
Probabilistic model of Γ, Λ and Θ

Information Theory and Maximum Entropy Principle:

- Random variable Γ:

 $$p_\Gamma(\gamma) = \mathbb{1}_{[0,1]}(\gamma) e^{-\mu_0 - \gamma \mu_1 - \gamma^2 \mu_2}$$

- Random variable Λ and Θ: **gamma distributions** with parameters

 m_Λ (mean) and δ_Λ (standard deviation)

 m_Θ (mean) and δ_Θ (standard deviation)
Construction of the computational model

Procedure

1. Construction of the probability distribution of urban environments geometrical parameters (height h, width w, spacing d, . . .)

2. Obtain reference solutions

3. Construct probability distributions of Γ, Λ and Θ, parameters of the porous layer

4. Identify parameters of $p_\Gamma (\gamma)$, $p_\Lambda (\lambda)$ and $p_\Theta (\theta)$

5. Solve the stochastic equations with Monte-Carlo
Information Theory and Maximum Entropy Principle:

- Random variable Γ:

$$p_{\Gamma}(\gamma) = 1_{[0,1]}(\gamma) e^{-\mu_0 - \gamma \mu_1 - \gamma^2 \mu_2}$$

- Random variable Λ and Θ: **gamma distributions** with parameters m_Λ (mean) and σ_Λ (standard deviation)

 - m_Θ (mean) and σ_Θ (standard deviation)
Information Theory and Maximum Entropy Principle:

- Random variable Γ:

\[
p_\Gamma(\gamma) = 1_{[0,1]}(\gamma) e^{-\mu_0 - \gamma \mu_1 - \gamma^2 \mu_2}
\]

- Random variable Λ and Θ: gamma distributions with parameters m_Λ (mean) and σ_Λ (standard deviation), m_Θ (mean) and σ_Θ (standard deviation)

To do:
Find a relation between buildings geometry (height, width, spacing...) and parameters $(\mu_0, \mu_1, \mu_2, m_\Lambda, m_\Theta, \delta_\Lambda, \delta_\Theta)$ with the help of the reference model.
Identification of parameters of distribution functions $p_{\Gamma}(\gamma)$, $p_{\Lambda}(\lambda)$ and $p_{\Theta}(\theta)$

Stochastic inverse problem solved with

- An evolutionary algorithm…
- … with a multi-objective function
Identification of parameters of distribution functions $p_\Gamma(\gamma)$, $p_\Lambda(\lambda)$ and $p_\Theta(\theta)$

Stochastic inverse problem solved with

- An evolutionary algorithm...
- ...with a multi-objective function

Two objectives

- **Minimization of the mean-square norm:** tries to minimize the areas where the experimental observations do not belong to the confidence region of the stochastic model.
Identification of parameters of distribution functions $p_{\Gamma}(\gamma), p_{\Lambda}(\lambda)$ and $p_{\Theta}(\theta)$

Stochastic inverse problem solved with

- An evolutionary algorithm...
- … with a multi-objective function

Two objectives

- **Minimization of the mean-square norm:** tries to minimize the areas where the experimental observations do not belong to the confidence region of the stochastic model
- **Maximization of the likelihood:** tries to maximize the likelihood between the experimental observations and observations from the stochastic model
Construction of the computational model

Procedure

1. Construction of the probability distribution of urban environments geometrical parameters (height h, width w, spacing d, ...)

2. Obtain reference solutions

3. Construct probability distributions of Γ, Λ and Θ, parameters of the porous layer

4. Identify parameters of $p_{\Gamma}(\gamma)$, $p_{\Lambda}(\lambda)$ and $p_{\Theta}(\theta)$

5. Solve the stochastic equations with Monte-Carlo
Outline

1 Principle and methodology

2 Construction of the computational model

3 Application and validation

4 Conclusion & perspectives
Two urban city morphologies

Low dispersion:

\[(m_H, \sigma_H) = (10, 2) m \]
\[(m_W, \sigma_W) = (20, 4) m \]
\[(m_D, \sigma_D) = (30, 6) m \]

High dispersion:

\[(m_H, \sigma_H) = (40, 8) m \]
\[(m_W, \sigma_W) = (30, 6) m \]
\[(m_D, \sigma_D) = (30, 6) m \]

\[u_1 = (10, 20, 30, 0.2, 0.2, 0.2)\]
\[u_2 = (40, 40, 30, 0.2, 0.2, 0.2)\]
Inverse stochastic problem

Evolutionary algorithm with

- Population of 50 individuals
- Evolution over 50 generations
- Half the population replaced at each generation
Inverse stochastic problem

Evolutionary algorithm with

- Population of 50 individuals
- Evolution over 50 generations
- Half the population replaced at each generation

$u_1 = (10, 20, 30, 0.2, 0.2, 0.2)$

$u_2 = (40, 40, 30, 0.2, 0.2, 0.2)$
Experimental observations belong to the confidence regions of the stochastic model, independently of the dispersion on the system.
Outline

1. Principle and methodology
2. Construction of the computational model
3. Application and validation
4. Conclusion & perspectives
Conclusions & perspectives

Stochastic model for propagation over complex surfaces based on...

...a simple propagation model...

- Based on the Nonlinear Parabolic Equation model
- Fast but far too simplistic to account for the complexity of the real system
Conclusions & perspectives

Stochastic model for propagation over complex surfaces based on . . .

. . . a simple propagation model . . .

- Based on the Nonlinear Parabolic Equation model
- Fast but far too simplistic to account for the complexity of the real system

. . . complexified with a probabilistic approach of uncertainties

- Uses Information Theory and the Maximum Entropy Principle
Stochastic model for propagation over complex surfaces based on...

...a simple propagation model...

- Based on the Nonlinear Parabolic Equation model
- Fast but far too simplistic to account for the complexity of the real system

...complexified with a probabilistic approach of uncertainties

- Uses Information Theory and the Maximum Entropy Principle

Perspectives

Large parametric studies, statistical mapping...
Thanks for your attention!